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Abstract. Lie–Bäcklund symmetries and conservation laws are derived for weakly nonlinear
magnetohydrodynamic (MHD) equations describing the interaction of the Alfvén and
magnetoacoustic modes propagating parallel to the ambient magnetic field, in the parameter
regime near the triple umbilic point, where the gas sound speedag matches the Alfv́en speedVA.
The dispersive form of the equations can be expressed in Hamiltonian form and admit four Lie
point symmetries and conservation laws associated with space-translation invariance (momentum
conservation), time translation invariance (energy conservation), rotational invariance about
the magnetic fieldB (helicity conservation), plus a further symmetry that is associated with
accelerating wave similarity solutions of the equations. The main aim of the paper is a study
of the symmetries and conservation laws of the dispersionless equations. The dispersionless
equations are of hydrodynamic type and have three families of characteristics analogous to the
slow, intermediate and fast modes of MHD and the Riemann invariants for each of these modes
are given in closed form. The dispersionless equations are shown to be semi-Hamiltonian, and to
possess two infinite families of symmetries and conservation laws. The analysis emphasizes the
role of the Riemann invariants of the dispersionless equations and a hodograph transformation
for a restricted version of the equations.

1. Introduction

Nonlinear finite amplitude Alfv́en waves and magnetosonic waves are of fundamental
interest to plasma physics, space plasma physics and astrophysics. In the solar wind the
scale lengths of the background plasma flow at sufficiently large distances from the Sun are
much greater than the typical Alfvén wavelength, and hence provide a natural laboratory
for testing nonlinear theories for Alfvén waves and their coupling to magnetosonic modes,
as well as wave generation by electromagnetic instabilities.

Early work by Taniuti and Wei [1] and Kakutaniet al [2] showed that the propagation of
weakly nonlinear, long-wavelength dispersive magnetosonic waves at a finite non-zero angle
to the background magnetic field was governed by the Korteweg–deVries (KdV) equation,
whereas the Alfv́en wave satisfies the modified Korteweg–deVries (mKdV) equation.

The quasi-parallel propagation of MHD waves along the magnetic field is degenerate in
the sense that the Alfvén speedVA then matches one of the magneto-acoustic speedsVf or
Vs for the fast and slow magnetosonic modes. In this case the canonical equation governing
the evolution of right-hand and left-hand polarized Alfvén waves is the derivative nonlinear
Schr̈odinger (DNLS) equation [3–5]. The DNLS equation is an integrable Hamiltonian
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system, with an infinite number of conservation laws. It’s initial value problem can be
solved exactly by the inverse scattering transform (IST), which is the nonlinear analogue of
the Fourier transform [6, 7]).

Generalized forms of the DNLS equation for a kinetic guiding centre plasma, including
the effects of a finite plasma beta, and a non-local term representing the effects of resonant
particles, as well as three dimensional effects associated with wave diffraction have been
derived by Mjølhus and Wyller [8]. Related work on modified forms of the DNLS equation
appropriate for warm, multi-species plasmas with anisotropic pressures has been carried out
by Verheest [9], Khabibrakhmanovet al [10], and DeConincket al [11, 12]).

The derivation of the DNLS equation assumes that the Alfvén and sound speeds are well
separated and distinct. Work by Brio [13,14], Hada [15], Brio and Rosenau [16], and Passot
and Sulem [17] considers the appropriate form of the wave evolution equations for quasi-
parallel propagation of the Alfv́en and magneto-acoustic modes near the triple umbilic point,
where the sound speed and Alfvén speed are almost equal (i.e.a2

g/V
2

A − 1 = ε1 where
ag is the gas sound speed,VA is the Alfvén speed, andε is the perturbation parameter
representing the wave amplitude). In this limit, the coefficient of the nonlinear term in
the DNLS equation diverges, and a modified version of the method of multiple scales that
explicitly takes into account the fact thata2

g/V
2

A − 1 is a small quantity must be used. The
resulting equations have appropriately been described as the triple degenerate DNLS system
(the TDNLS system), since the Alfvén, fast magneto-acoustic and slow magneto-acoustic
waves have the same phase speed to lowest order inε. The divergence of the nonlinear
term in the DNLS equation asag/VA → 1 only occurs in the MHD two fluid model. The
coefficient of the nonlinear term for the kinetic guiding centre model is similar to that in the
MHD model of the DNLS equation forTe � Ti whereTe andTi denote the electron and
ion temperatures [18], but the two coefficients differ substantially forTi ∼ Te. Studies of
the modulational instability of circularly polarized Alfvén waves for the TDNLS equations
have been carried out by Hada [15]. Related work on the modulational instability has been
carried out by Hollweg [19].

Webb et al [20] showed that the TDNLS equations admit both Lagrangian and
Hamiltonian variational formulations. The Lie point symmetries admitted by the equations
were used to derive classical similarity solutions. The dispersive TDNLS equations possess
four Lie point symmetries associated with: time translation invariance, space translation
invariance, rotational invariance and a further symmetry. The first three symmetries
correspond, via Noether’s theorem, to the energy, momentum and helicity conservation
laws. An analysis of the prolongation Lie algebra suggested that the dispersive TDNLS
system for the caseγg 6= 0 is non-integrable, but is possibly an integrable system in the
limit γg → 0, whereγg is the gas adiabatic index.

The main purpose of the present paper is to study the relationship between
the symmetries and conservation laws of the dispersionless TDNLS equations. The
dispersionless TDNLS system is of hydrodynamic type and has three families of
characteristics analogous to the slow, intermediate and fast modes of MHD, and the Riemann
invariants for each of these modes can be obtained in closed form [20]. A general theory
of the symmetries and conservation laws of equations of hydrodynamic type has been
developed by Dubrovin and Novikov [21], Tsarev [22, 23] and others (see, e.g., Ferapontov
[24]). Integrability conditions on the characteristic speeds were established by Tsarev [22,23]
in order that the system admit an infinite number of commuting flows (or Lie–Bäcklund
symmetries) and conservation laws. Application of this theory to the TDNLS system shows
that the dispersionless TDNLS equations admit an infinite number of commuting flows and
conservation laws.
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A brief overview of the dispersive TDNLS system is presented in section 2. In section 3,
the characteristic speeds and Riemann invariants of the dispersionless TDNLS equations
are established. We also discuss the Hamiltonian and Poisson bracket structure of the
dispersionless equations in section 3. In section 4, a search for conservation laws of the
dispersionless TDNLS equations of the form

∂A

∂t
+ ∂F

∂x
= 0 (1.1)

in which the conserved densitiesA(u, v,w) and fluxesF(u, v,w) depend only on the
dependent variablesu, v and w yields an infinite number of conservation laws. The
conserved densities turn out to satisfy a linear, second-order, hyperbolic differential equation.
The separated solutions of this latter equation yield infinite families of conserved densities
A. In section 5, Hamiltonian theory [22–25] is then used to relate the symmetries and
conservation laws for the dispersionless TDNLS equations. In section 6, Lie–Bäcklund
symmetries of the equations are obtained by exploiting the hodograph transformation for a
restricted form of the equations. In section 7, the commutation relations for the symmetry
algebra of the non-dispersive TDNLS equations are given. We conclude in section 8 with
a summary and discussion.

2. The dispersive TDNLS system

The TDNLS system studied by Brio [13, 14], Hada [15], and by Brio and Rosenau [16]
describes the quasi-parallel propagation and interaction of the fast, slow and intermediate
MHD modes along the background magnetic field in the special limit where the gas sound
speed matches to lowest order in the perturbation parameterε, the Alfvén speedVA, and the
fast, slow and Alfv́en speeds coincide to lowest order. The TDNLS equations are derived
from the equations for two fluid, Hall current plasmas by the method of multiple scales.
The dimensional form of the TDNLS equations may be written as

∂

∂t

(
δρ

ρ0

)
+ VA

∂

∂x

[
γg + 1

4

(
δρ

ρ0

)2

+ 1

2

(
a2

g

V 2
A

− 1

)
δρ

ρ0
+ δB+δB−

4B2
0

]
= 0 (2.1)

∂

∂t

(
δB±

B0

)
+ VA

∂

∂x

[
1

2

δρ

ρ0

δB±

B0
± i
χ

2

∂

∂x

(
δB±

B0

)]
= 0 (2.2)

where

δB± = δBy±iδBz = εB0(v±iw) δρ = ερ0u (2.3)

represent the complex transverse field perturbations(δB±), and density perturbations(δρ).
The density perturbationδρ andx-component of the fluid velocity perturbation are related
by the eigenequationδu = VAδρ/ρ0. In equations (2.1), (2.2) it is assumed that

a2
g

V 2
A

− 1 = ε1 (2.4)

where1 is a constant of order unity. The parameterχ = VA/�p is the ion inertial length and
x = X−VA t denotes position in the wave frame;ρ0 andB0 denote the background density
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and magnetic field induction andγg is the adiabatic index of the gas. The dimensionless
form of the TDNLS equations used by Brio and Rosenau [16] are

∂u

∂t̄
+ ∂

∂x̄

(
0u2 + v2 + w2

2

)
= 0 (2.5)

∂ψ

∂t̄
+ ∂

∂x̄
[(u−1)ψ + iχ̄ψx̄ ] = 0 (2.6)

where ψ = v + iw represents the complex transverse magnetic field perturbations,u

represents the density orx-component of the fluid velocity perturbation, and

0 = γg + 1. (2.7)

The stretched space and time variables in equations (2.5)–(2.6)x̄ and t̄ are defined by

x̄ = x̃ −1t̄ x̃ = εx

χ
t̄ = 1

2ε
2�pt. (2.8)

where�p is the proton gyro-frequency. The parameterχ̄ in equation (2.6) represents Hall
current dispersion. In ion inertial units, in which distance is measured in terms of the ion
inertial lengthVA/�p, and time in terms of the proton gyro-time scale�−1

p , the parameter
χ̄ = 1. Our main concern in the present paper is with the dispersionless form of the TDNLS
equations withχ = χ̄ = 0.

In terms of(u, v,w) as dependent variables, the TDNLS system may be expressed in
the form

ut +Dx

(
0u2 + v2 + w2

2

)
= 0 (2.9)

vt +Dx [(u−1)v − χwx ] = 0 (2.10)

wt +Dx [(u−1)w + χvx ] = 0 (2.11)

where we use the notationDx ≡ ∂/∂x, and by a convenient abuse of notation we have
dropped bars on the normalized quantitiesχ̄ , x̄ and t̄ which we also use in the following
development.

2.1. Lie point symmetries and variational formulations

In this section we briefly note the Lie point symmetries of the dispersive TDNLS system
(2.9)–(2.11), and variational formulations of the equations which are described in greater
detail in Webbet al [20].

The TDNLS equations (2.9)–(2.11) for general0 admit Lie point symmetries of the
form

x ′ = x + εξx t ′ = t + εξ t

u′ = u+ εηu v′ = v + εηv w′ = w + εηw
(2.12)

where

ξx = c1 − c4[(0 − 1)x − 01t ] ξ t = c2 − 2(0 − 1)c4t

ηu = c4[(0 − 1)u+1] ηv = −c3w + c4v ηw = c4w + c3v.
(2.13)
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The corresponding vector field

X = ξx
∂

∂x
+ ξ t

∂

∂t
+ ηu

∂

∂u
+ ηv

∂

∂v
+ ηw

∂

∂w
=

4∑
i=1

ciXi (2.14)

spans the point Lie algebra, where the basis vector fields{Xi : i = 1(1)4}, are given by

X1 = ∂

∂x
X2 = ∂

∂t
X3 = v

∂

∂w
− w

∂

∂v
≡ ∂

∂θ

X4 = −[(0 − 1)x − 01t ]
∂

∂x
− 2(0 − 1)t

∂

∂t
+ [(0 − 1)u+1]

∂

∂u

+ (0 − 1)

(
v
∂

∂v
+ w

∂

∂w

) (2.15)

and the{ci : i = 1(1)4} are arbitrary constants. The non-zero commutators of the point Lie
algebra are

[X1, X4] = −[X4, X1] = −(0 − 1)X1

[X2, X4] = −[X4, X2] = 01X1 − 2(0 − 1)X2.
(2.16)

The vector fieldX1 corresponds to space translation invariance;X2 to time translation
invariance; andX3 to rotational invariance of the(v,w) variables (i.e. invariance with
respect to translations inθ , wherev = r cosθ , andw = r sinθ ). The symmetryX4 is more
difficult to characterize.

The TDNLS equations (2.9)–(2.11) can be obtained by extremizing the variational
functional

J [Uα] =
∫ ∫

L dx dt (2.17)

where the Lagrange densityL is given by

L = − 1
2

[
1
30U

3
x +9x9

∗
x (Ux −1)+ UxUt + 1

2(9x9
∗
t +9∗

x9t )+ 1
2iχ(9∗

x9xx −9x9
∗
xx)

]
(2.18)

u = Ux ψ = v + iw = 9x ≡ Vx + iWx. (2.19)

In equations (2.18) the superscript∗ denotes complex conjugation andU , V , W and
9 = V + iW are potentials foru, v, w andψ .

Use of the variational principle (2.17) coupled with Noether’s theorem (e.g. [26]),
and the Lie point symmetries (2.12), (2.13) yields four conservation laws for the TDNLS
equations of the form

DtAj +DxFj = 0 (2.20)

whereDt ≡ ∂/∂t andDx ≡ ∂/∂x. The conserved densities{Aj : j = 1(1)4} and fluxes
{Fj : j = 1(1)4} corresponding to the symmetry operators{Xj : j = 1(1)4} are given
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below:

A1 = 1
2(u

2 + v2 + w2) (2.21a)

F1 = 1
30u

3 + (
u− 1

21
)
(v2 + w2)− χ(vwx − wvx) (2.21b)

A2 = 1
2

(
1
30u

3 + (u−1)(v2 + w2)− χ(vwx − wvx)
)

(2.22a)

F2 = 1
2

(
1
4(0u

2 + v2 + w2)2 + [(u−1)v − χwx ]2 + [(u−1)w + χvx ]2

−χ(wvt − vwt)
)

(2.22b)

A3 = WVx − VWx (2.23a)

F3 = [(u−1)v − χwx ]W − [(u−1)w + χvx ]V + χ(v2 + w2) (2.23b)

A4 = 2(0 − 1)tA2 − [(0 − 1)x − 01t ]A1 +1U (2.24a)

F4 = 2(0 − 1)tF2 − [(0 − 1)x − 01t ]F1. (2.24b)

Equations (2.21)–(2.24) correspond respectively to the momentum, energy and helicity
conservation laws, plus a more obscure conservation law associated with the symmetry
operatorX4.

The TDNLS system (2.9)–(2.11) can also be written in the Hamiltonian form

ut = Dx

(
δH
δu

)
= −Dx

(
0u2 + v2 + w2

2

)

vt = Dx

(
δH
δv

)
= −Dx [(u−1)v − χwx ]

wt = Dx

(
δH
δw

)
= −Dx [(u−1)w + χvx ]

(2.25)

where

H =
∫ ∞

−∞
H dx (2.26)

H ≡ −A2 = − 1
2

(
1
30u

3 + (u−1)(v2 + w2)− χ(vwx − wvx)
)

(2.27)

defines the Hamiltonian functionalH, Dx is the symplectic operator [25] andδH/δuα
denotes the variational derivative ofH with respect touα. The Hamiltonian densityH
corresponds to the conserved densityA2 associated with the time translation symmetry.

The above summary gives the main results in Webbet al [20] concerning the dispersive
TDNLS system pertinent to the present development. Note that the Lagrangian variational
principle (2.17), the Hamiltonian variational principle (2.25), the Lie point symmetries
(2.15), and conservation laws (2.21)–(2.24) also apply to the non-dispersive equations in
which χ = 0.
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3. The non-dispersive TDNLS equations

In section 3.1 we establish the characteristic speeds and Riemann invariants of the
dispersionless TDNLS system. Using the Riemann invariants as the dependent variables,
the equations are reduced to a diagonal system of hydrodynamic type. In section 3.2 we
give a brief discussion of the Poisson bracket structure and the geometry of the equations
under a transformation of the dependent variables. In particular, the Hamiltonian structure
of the equations are discussed for the case where the Riemann invariants are used as the
new dependent variables.

3.1. The Riemann invariants

The dispersionless TDNLS system (2.9)–(2.11) withχ = 0 may be written in the matrix
form

∂u

∂t
+ A · ∂u

∂x
= 0 (3.1)

whereu = (u, v,w)T (the superscript T denotes the transpose) and the matrixA is given
by

A =
0u v w

v u−1 0

w 0 u−1

 . (3.2)

Along a characteristic curveC : x = x(s), t = t (s) for equations (3.1)

det(A − λI) = 0 λ = x ′(s)
t ′(s)

. (3.3)

The Riemann invariants for equations (3.1) are functionsR(u, v,w) that are constant along
the characteristics, and hence∇uR = (Ru, Rv, Rw) is a left eigenvector of the matrixA

∇uR · (A − λI) = 0 (3.4)

(see, e.g., [27]).
From equations (3.2) and (3.3), the eigenvalues or characteristic speedsλ satisfy the

eigenvalue equation

det(A − λI) = −[λ− (u−1)]{λ2 + [1− (0 + 1)u]λ+ 0u(u−1)− r2} = 0 (3.5)

wherer2 = v2 + w2. There are three solutions of the eigenvalue equation (3.5), namely

λ = λI = u−1 λf = λ+ = 1
2[(0+1)u−1+D 1

2 ] λs = λ− = 1
2[(0+1)u−1−D 1

2 ]

(3.6)

where

D = [(0 − 1)u+1]2 + 4r2. (3.7)
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In equations (3.6),λf > λI > λs, and the subscripts ‘f’, ‘I’, and ‘s’ denote the fast,
intermediate and slow mode solutions in analogy with the fast, intermediate and slow modes
of MHD. From the right eigenvectors of the matrixA one can show that the intermediate
mode is incompressible, but the fast and slow modes are compressible.

The differential equations (3.4) for the Riemann invariants written in component form
are

(0u− λ)
∂R

∂u
+ v

∂R

∂v
+ w

∂R

∂w
= 0 (3.8)

v
∂R

∂u
+ (u−1− λ)

∂R

∂v
= 0 (3.9)

w
∂R

∂u
+ (u−1− λ)

∂R

∂w
= 0. (3.10)

Converting to polar coordinates,v = r cosθ , w = r sinθ , equations (3.8)–(3.10) yield the
equations

(0u− λ)
∂R

∂u
+ r

∂R

∂r
= 0 (3.11)

(u−1− λ)
∂R

∂θ
= 0. (3.12)

For the intermediate modeλ = u − 1, and equations (3.8)–(3.12) yield the Riemann
invariant

R = RI = tanθ = w

v
(3.13)

(in fact any pure function ofθ will do as a Riemann invariant).
For the fast and slow modes for whichλ 6= (u − 1), the Riemann invariants

Rf = R+(u, r) and Rs = R−(u, r) are independent ofθ . The Riemann invariants may
be obtained by integrating the characteristic equation

du

dr
= 0u− λ

r
(3.14)

associated with equation (3.11), where the integration constant may be identified with the
Riemann invariant. Using the expressions (3.6) forλ±, the characteristic equation (3.14)
may be written in the separable form

r
dµ

dr
= 1

2
[(0 − 3)µ− (0 − 1)σ (µ2 + 4)

1
2 ] σ = ±1 (3.15)

where

µ = (0 − 1)u+1

r
(3.16)

and the solutions forσ = ±1 correspond toλ = λ±, respectively.
The general solution of the differential equations (3.15) for0 6= 1 and0 6= 2 are

R+ = r|φ − 1|−1|φ + 1|α1

∣∣∣∣φ2 − 2(0 − 3)

0 − 1
φ + 1

∣∣∣∣α2

(3.17)

R− = r|φ − 1|α1|φ + 1|−1

∣∣∣∣φ2 + 2(0 − 3)

0 − 1
φ + 1

∣∣∣∣α2

(3.18)
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where

α1 = 1

0 − 2
α2 = 0 − 3

2(0 − 2)
φ = (4 + µ2)

1
2 − 2

µ
. (3.19)

The integration constantsR+ and R− are the Riemann invariants for the fast and slow
modes.

For0 = 1, integration of the characteristic equation (3.14) yields the Riemann invariants

R+ = u+ 1
2(g −1 ln |g +1|) R− = u− 1

2(g +1 ln |g −1|) (3.20)

where

g = (12 + 4r2)
1
2 . (3.21)

For 0 = 2, integration of equations (3.15) yields the invariants

R+ = r

∣∣∣∣φ + 1

φ − 1

∣∣∣∣ exp

(
2φ

(φ + 1)2

)
R− = r

∣∣∣∣φ − 1

φ + 1

∣∣∣∣ exp

(
− 2φ

(φ − 1)2

)
(3.22)

whereφ is defined in equation (3.19). For0 = 3 (γg = 2), the solutions (3.17) and (3.18)
simplify to

R+ = r

∣∣∣∣φ + 1

φ − 1

∣∣∣∣ = 1

2
r|µ+ (µ2 + 4)

1
2 | = |λ+ +1|

R− = r

∣∣∣∣φ − 1

φ + 1

∣∣∣∣ = 1

2
r|(4 + µ2)

1
2 − µ| = |λ− +1|.

(3.23)

Henceλ+ is constant on theC+ characteristic andλ− is constant on theC− characteristic
and the characteristics are straight lines in the(x, t) plane forγg = 2.

The dispersionless TDNLS system (3.1) when written in terms of the Riemann invariants
results in the diagonalized system

∂Ri

∂t
+ λi

∂Ri

∂x
= 0 i = 1(1)3 (3.24)

wherei = 1, 2, 3 refer to the slow, intermediate and fast modes respectively.

3.2. Hamiltonian systems of hydrodynamic type

The dispersionless TDNLS system (3.1) has been reduced to the diagonalized Riemann
invariant form (3.24). Both equation systems are clearly Hamiltonian systems, but further
analysis is needed to show the Hamiltonian structure of the Riemann invariant form of the
equations. The system (3.1) can be written in the Poisson bracket form

uαt = {uα,H} = ∂2H

∂uα∂uβ
uβx (3.25)

whereH is the Hamiltonian density (2.27) withχ = 0, and H is the corresponding
Hamiltonian functional. In equations (3.25)

{F,G} =
∫ ∞

−∞

δF

δuα
Dx

(
δG

δuα

)
dx (3.26)
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is the Poisson bracket for functionalsF(uα) andG(uα), with (u1, u2, u3) = (u, v,w). One
question addressed in detail by Tsarev [23] is the manner in which the Poisson bracket
changes under a general change of variableswα = wα(u). Of particular interest is the form
of the Poisson bracket in terms of the Riemann invariantsRα = Rα(u).

For a general change of variablesuα → wα(u), the Poisson bracket (3.26) assumes the
form

{F,G} =
∫ ∞

−∞

δF

δws
Asp

(
δG

δwp

)
dx (3.27)

where

Asp = ḡspDx − ḡsa0̄
p

akw
k
x (3.28)

is the symplectic operator in the new variables and

ḡsp = ∂ws

∂uα

∂wp

∂uβ
gαβ gαβ = δαβ

0̄abc = − ∂uα

∂wb

∂uβ

∂wc

∂2wa

∂uα∂uβ
0abc = 0

(3.29)

defines the metric̄gsp and affine connection̄0abc in the new variableswα, andδαβ denotes
the Kronecker delta symbol. The quantitiesgab = δab and 0abc ≡ 0, correspond to the
metric and affine connection in theuα variables. The Poisson bracket (3.27) is that used by
Dubrovin and Novikov [21] in their work on Hamiltonian systems of hydrodynamic type.
From equations (3.27)

{wa(x, t), wb(y, t)} = ḡabδ′(x − y)− ḡas 0̄bθsw
θ
xδ(x − y) (3.30)

is the Poisson bracket for the new variables{wα}, whereδ(x − y) denotes the Dirac delta
distribution, andδ′(x − y) is it’s derivative. One can show that the Poisson bracket (3.27)
is anti-symmetric and satisfies the Jacobi identity if the connection0̄abc is symmetric and if
the Riemann curvature tensorRαβγ δ is identically zero [23]. In terms of the new variables
{wα}, the Hamiltonian system (3.25) may be written in the form

wαt = (∇̄α∇̄βH)w
β
x = {wα,H} (3.31)

where∇̄α denotes the covariant derivative with associated metricḡab and connection̄0abc.
One can show that the hydrodynamic type system [23]

wαt = V αβw
β
x (3.32)

is Hamiltonian iff the conditions

ḡikV
k
j = ḡjkV

k
i ∇̄i (V

k
j ) = ∇̄j (V ki) (3.33)

hold. For the special case wherewα ≡ Rα(u) are the Riemann invariants, use of the results
(3.32), (3.33) imply that the metric̄gab has the diagonal form

ḡab = ∂Ra

∂uα

∂Rb

∂uα
= 3aδ

a
b ḡab = ∂uα

∂Ra

∂uα

∂Rb
≡ 1

3a

δab (3.34)
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whereḡaa ≡ 3a denotes the diagonal element of the metric. The connection coefficients in
this case are given by

0̄ijk = 0 if i 6= j 6= k

0̄kik = 0̄kki = ∂i ln(ḡ
1
2
kk) ≡ ∂iλ

k

λi − λk
if i 6= k

0̄kkk = ∂k ln(ḡ
1
2
kk)

(3.35)

and ∂i ≡ ∂/∂Ri denotes the partial derivative with respect to the Riemann invariantRi .
Finally we note that the equations for̄0kik in equations (3.35) regarded as differential
equations for theλk are integrable if

∂j

(
∂iλ

k

λi − λk

)
− ∂i

(
∂jλ

k

λj − λk

)
= 0 for i 6= j 6= k. (3.36)

Equations (3.36) also turn out to be a requirement that the Riemann invariant equations
admit Lie–B̈acklund symmetries.

A diagonal quasilinear system of equations of the form (3.24) inn variablesRi (n > 3)
(which is not necessarily Hamiltonian) and for which theλi(R) are distinct, and that satisfy
equations (3.36) is called semi-Hamiltonian (see [23]). These systems admit an infinite
number of Lie–B̈acklund symmetries. Forn 6 2, any system of the form (3.24) is considered
semi-Hamiltonian.

In the following two sections we consider conservation laws for the non-dispersive
TDNLS system from two perspectives. In section 4 we use the straightforward ansatz (1.1)
to derive an infinite family of conservation laws. Then in section 5, we use the theory
developed by Tsarev [22, 23] and Ferapontov [24] to relate the conservation laws to
commuting flows or Lie–B̈acklund symmetries admitted by the equations.

4. Families of conservation laws

A straightforward way in which to derive conservation laws for the dispersionless TDNLS
system (3.1) is to search for conserved densitiesA(u, v,w) and fluxesF(u, v,w) satisfying
the conservation equation

∂A

∂t
+ ∂F

∂x
= 0. (4.1)

This procedure turns out to yield two distinct families of conservation laws. More general
conservation laws that depend explicitly onx and t , or on the potentialsU , V andW can
clearly be constructed. Examples of conservation laws that are not of this form include
the helicity conservation law (equations (2.23)) which depends on the potentialsV andW ,
and the conservation law associated with the symmetry operatorX4 (equations 2.24) which
depends explicitly onx and t .

From equations (2.9)–(2.11), the dispersionless TDNLS equations can be written as

ut + 0uux + vvx + wwx = 0

vt + vux + (u−1)vx = 0

wt + wux + (u−1)wx = 0.

(4.2)
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Alternatively using polar coordinates,v = r cosθ , w = r sinθ , the equations may be written
in the polar coordinate form

ut + 0uux + rrx = 0

rt + (u−1)rx + rux = 0

θt + (u−1)θx = 0.

(4.3)

Both forms of the equations will be of use in the following analysis.
Using equations (4.2) in equation (4.1) and equating to zero the coefficients ofux , vx

andwx yields the equations

Fu = 0uAu + vAv + wAw (4.4)

Fv = vAu + (u−1)Av (4.5)

Fw = wAu + (u−1)Aw. (4.6)

The integrability conditions for equations (4.4)–(4.6) require thatF have continuous second-
order partial derivatives with respect tou, v andw. This leads to the compatibility equations

2F[uv] = [(0 − 1)u+1]Auv + vAvv + wAwv − vAuu = 0 (4.7)

2F[uw] = [(0 − 1)u+1]Awu + w(Aww − Auu)+ vAvw = 0 (4.8)

2F[vw] = vAuw − wAuv = 0 (4.9)

whereF[uv] = 1
2(Fuv − Fvu).

Subtractingw times equation (4.7) fromv times equation (4.8), and using equation (4.9)
leads to the equation

(v2 − w2)Avw + vw(Aww − Avv) = 0. (4.10)

Converting to polar coordinates, equations (4.9) and (4.10) may be written in the form

∂Au

∂θ
= 0

∂

∂θ

(
r
∂A

∂r
− A

)
= 0. (4.11)

Equations (4.11) have solutions of the form

A = a(r, u)+ rh(θ). (4.12)

Substituting the solution ansatz (4.12) in equation (4.8) requires thata(r, u) satisfies the
linear second-order partial differential equation

[(0 − 1)u+1]aru + r(arr − auu) = 0. (4.13)

Equation (4.13) plays a central role in the following analysis. It is of interest to note that
the solution

A = rh(θ) (4.14)
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obtained by settinga(r, u) = 0 in equation (4.12) corresponds to the conservation law

Dt [rh(θ)] +Dx [(u−1)rh(θ)] = 0 (4.15)

which may be verified by using equations (4.3).
Now consider in detail the solutions forA of the form A = a(r, u), wherea(r, u)

satisfies the partial differential equation (4.13). In this case equations (4.4)–(4.6) for the
fluxes satisfy the equations

Fu = 0uAu + rAr Fr = rAu + (u−1)Ar Fθ = 0. (4.16)

The integrability conditions for equations (4.16) imply thata(r, u) must satisfy equation
(4.13). The characteristic coordinates for the hyperbolic equation (4.13) are functions
ξ = ξ(r, u) satisfying the characteristic equation

[(0 − 1)u+1]ξrξu + r(ξ2
r − ξ2

u ) = 0. (4.17)

Solving equation (4.17) forξr/ξu yields the two characteristic equations

ξr

ξu
= − (0u− λ±)

r
or rξr + (0u− λ±)ξu = 0 (4.18)

whereλ± are the characteristic speeds for the fast and slow modes listed in equations (3.6).
Equations (4.18) are readily recognized as the Riemann invariant equations (3.11). The
characteristics of equations (4.18) are given by equations (3.14). Thus the characteristic
variables for equation (4.13) are just the Riemann invariants for the fast and slow modes
obtained in section 3.

The analysis of the Riemann invariants in section 3 suggests that for0 6= 1 it is useful
to write equation (4.13) in terms of the variable

µ = (0 − 1)u+1

r
(4.19)

andr as independent variables, to obtain the equation

[(2 − 0)µ2 − (0 − 1)2]aµµ + (0 − 3)µrarµ + r2arr + (3 − 0)µaµ = 0. (4.20)

Equation (4.20) admits separable solutions of the form

a = r−sG(µ, s) (4.21)

whereG satisfies the second-order differential equation

[(2 − 0)µ2 − (0 − 1)2]Gµµ − (s + 1)(0 − 3)µGµ + s(s + 1)G = 0. (4.22)

For 0 6= 2, equation (4.22) has solutions in terms of hypergeometric functions in the form
[28, ch 15, p 556]

G = α1F

(
s

2
,
s + 1

2(2 − 0)
; 1

2
; z

)
+ β1z

1
2F

(
s + 3 − 0

2(2 − 0)
,
s + 1

2
; 3

2
; z

)
(4.23)
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where

z = (2 − 0)µ2

(0 − 1)2
. (4.24)

Since the first hypergemetric functionF(a, b; c; z) solution term in equation (4.23) has it’s
third argumentc = 1

2, then the solutions forG may also be written in terms of the solutions
of Legendre’s equation in the form [28, formula 15.4.23, p 562]

G = (z − 1)
σ
2

(
α1P

σ
ν (z

1
2 )+ β1Q

σ
ν (z

1
2 )

)
(4.25)

where

σ = s(0 − 3)− (0 − 1)

2(2 − 0)
ν = 0 − 3 − s(0 − 1)

2(2 − 0)
(4.26)

andP σν (x) andQσ
ν (x) are standard solutions of Legendre’s equation [28, ch 8, p 331]

d2y

dx2
− 2x

1 − x2

dy

dx
+

(
ν(ν + 1)

1 − x2
− σ 2

(1 − x2)2

)
y = 0 . (4.27)

It is of interest to note that the separated solutions (4.21) reduce to polynomial conserved
densities for special values of the separation constants. If one of the parametersa or b in the
hypergeometric functionF(a, b; c; z) are negative integers, then the hypergeometric power
series terminates leading to polynomial conserved densities. In particular fors = −2n and
s = −2n− 1 one obtains polynomial conserved densities

a2n = α1
n!

(1/2)n
r2nP

(− 1
2 ,γ1)

n (1 − 2z)

a2n+1 = β1
n!

(3/2)n
r2n+1z

1
2P

( 1
2 ,γ2)

n (1 − 2z)

(4.28)

where

γ1 = 2n− 1

2(0 − 2)
−

(
n+ 1

2

)

γ2 = 2n+ 0 − 2

2(0 − 2)
−

(
n+ 3

2

)
(q)n = q(q + 1)+ · · · (q + n− 1)

(4.29)

and P (α,β)n (x) is the Jacobi polynomial of degreen [28, formula 15.4.6, p 561]. The
solutions (4.28) can also be written in terms of Gegenbauer or ultraspherical polynomials.
The polynomiala2n(u, r) is of degree 2n in bothu andr, whereasa2n+1(u, r) is of degree
2n+ 1 in bothu andr. We show in the appendix how the conserved densitiesA1 andA2

associated with space translation and time translation invariance given in equations (2.21)
and (2.22) (in the dispersionless case), namely

A1 = 1
2(u

2 + r2) A2 = 1
2

(
1
30u

3 + (u−1)r2
)

(4.30)

are related to the polynomial densities (4.28).
The solutions (4.21)–(4.23) do not cover the special cases0 = 1 and0 = 2 which are

dealt with below.
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TheΓ = 2 case

In this case equation (4.22) reduces to

Gµµ − (s + 1)µGµ − s(s + 1)G = 0. (4.31)

Equation (4.31) has solutions in terms of parabolic cylinder functions (which are a special
case of the confluent hypergeometric function) in the form

G = exp

(
(s + 1)µ2

4

) (
α1E

0
−s [(s + 1)

1
2µ] + β1D−s [(s + 1)

1
2µ]

)
(4.32)

whereE0
ν (x) andDν(x) are standard parabolic cylinder functions [28, ch 19, p 685]. For

s = −n one obtains the polynomial conserved densities

a(r, u) = α1r
nHen[(1 − n)

1
2µ] (4.33)

whereHen(x) is a standard Hermite polynomial [28, ch 22].

TheΓ = 1 case

In this case equation (4.13) has separable solutions of the form

a = exp(αu)Y (r, α) (4.34)

whereY (r, α) satisfies the differential equation

d2Y

dr2
+ α1

r

dY

dr
− α2Y = 0. (4.35)

Solving equation (4.35) forY leads to separated solutions fora of the form

a = exp[α(u− r)]
[
a1M

(
1
2α, α1,2αr

) + b1U
(

1
2α, α1,2αr

)]
(4.36)

where M(a, b, x) and U(a, b, x) are two standard confluent hypergeometric functions
[28, ch 13]. One can obtain polynomial conserved densities from the solution (4.36) by
expanding the solutions in a power series inα.

For the special case1 = 1 the solution (4.36) may be expressed in terms of modified
Bessel functions

a = exp(αu)r−ν [a1Iν(αr)+ b1Kν(αr)] (4.37)

whereν = (α − 1)/2, andIν(x) andKν(x) are modified Bessel functions of the first and
second kind. From expanding the solution (4.37) in a power series inα one can obtain not
only polynomial conserved densities inu andr, but also polynomials inu, r and lnr.
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5. Symmetries and conserved densities

In this section we use the theory of symmetries of systems of hydrodynamic type developed
by Tsarev [22, 23] and others (see, e.g., [24]) to relate the infinite families of conservation
laws for the dispersionless TDNLS equations obtained in section 4 to the Lie–Bäcklund
symmetries admitted by the equations.

The first step in the analysis is to determine the eigenvalues and Riemann invariants
of the hydrodynamic system of interest, and write the equations in terms of the Riemann
invariants{Ri} as dependent variables. This leads to the diagonalized system of equations
for the Riemann invariants

Rit + λi(Rα)Rix = 0 i, α = 1(1)N (5.1)

where the eigenvaluesλi(Rα) are implicit functions of the Riemann invariants. The
eigenvalues and Riemann invariants for the dispersionless TDNLS equations have already
been established in section 3.

The second step in the analysis is to investigate if the system (5.1) admits a commuting
flow or symmetry, in which the Riemann invariants satisfy the associated diagonalized
system

Riτ +Wi(Rα)Rix = 0 i = 1(1)N (5.2)

where theRi(x, t, τ ) is regarded as a function of the new ‘time’ variableτ , in which
translations with respect toτ correspond to a Lie–B̈acklund symmetry. The system of
equations (5.1) and (5.2) are compatible in this sense if

Ritτ = Riτt . (5.3)

Using equations (5.1) and (5.2) to eliminate derivatives with respect tot and τ in
equations (5.3) yields the system of first-order partial differential equations

∂jW
i

Wj −Wi
= ∂jλ

i

λj − λi
i 6= j i, j = 1(1)N (5.4)

where we use the notation∂jWi = ∂Wi/∂Rj and ∂jλi = ∂λi/∂Rj . The integrability
conditions for the differential equation system (5.4):Wi

jk = Wi
kj leads [22–24] to the

equations

T ijk ≡ ∂k

(
∂jλ

i

λj − λi

)
− ∂j

(
∂kλ

i

λk − λi

)
= 0 i 6= j 6= k. (5.5)

If the conditions (5.5) are satisfied, then the original system (5.1) admits an infinite
number of Lie–B̈acklund symmetries, with canonical Lie–Bäcklund operators of the form

X̂ = Ŝα
∂

∂Rα
+ ζ αs

∂

∂Rαs
+ ζ αsp

∂

∂Rαsp
+ · · · (5.6)

where [29]

Ŝα = −Rατ = WαRαx ζ αs = Ds(Ŝ
α) ζ αsp = DsDp(Ŝ

α) · · · (5.7)
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and the operators{Ds : s = 1, 2} correspond to total derivatives with respect tox and t
respectively. In more classical terminology, this implies that equations (5.1) are invariant
under the canonical infinitesimal Lie transformations

R′α = Rα + εŜα x ′ = x t ′ = t. (5.8)

If the conditions (5.5) are satisfied the system admits an infinite number of commuting
flows. A diagonal hydrodynamic system of the form (5.1), in which theλi are distinct and
non-zero, consisting ofN > 3 equations, which is not necessarily Hamiltonian, and which
satisifies conditions (5.4) is called semi-Hamiltonian. Such systems admit an infinite number
of commuting flows. It is worth noting that the generalized hodograph transformation

Wi(R) = x − λi(R)t (5.9)

for Wi(R) a solution of equations (5.4) may be used to obtain the general solution of
equations (5.2) [23, 24].

In the next section we show that the dispersionless TDNLS system (3.1) is a semi-
Hamiltonian system by verifying that the conditions (5.5) hold for the equations. In
section 5.2, we solve the differential equation system (5.4) for theWi . The corresponding
Lie–Bäcklund symmetries are then determined from equations (5.6)–(5.8). Using the general
theory of Hamiltonian systems (e.g. [30, 25]) the symmetries are then related to the infinite
class of conserved densities derived in section 4.

5.1. The integrability conditions (5.5) and derivative transformations

Taking λ1 < λ2 < λ3 to correspond to the slow, intermediate and fast mode waves (see
section 3), we find

∂

∂R1
= ∂µ

∂R1

(
∂

∂µ
+ 2r

(0 − 3)µ− (0 − 1)(µ2 + 4)
1
2

∂

∂r

)
(5.10)

∂

∂R3
= ∂µ

∂R3

(
∂

∂µ
+ 2r

(0 − 3)µ+ (0 − 1)(µ2 + 4)
1
2

∂

∂r

)
(5.11)

∂

∂R2
= cos2 θ

∂

∂θ
(5.12)

for the partial derivative operators{∂/∂Ri : i = 1(1)3}, where

∂µ

∂R1
= − (0 − 1)[1 + (0 − 2)µ2/(0 − 1)2]

R1(µ2 + 4)
1
2

(5.13)

∂µ

∂R3
= (0 − 1)[1 + (0 − 2)µ2/(0 − 1)2]

R3(µ2 + 4)
1
2

. (5.14)

In equations (5.10)–(5.14),R1, R2, andR3 refer to the Riemann invariants for the slow,
intermediate, and fast modes, and the variableµ is defined in terms ofr andu in equation
(3.16). The differential operator∂/∂R1 corresponds to differentiation along the fast mode
characteristicR3 = constant, whereas∂/∂R3 corresponds to differentiation along the slow
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mode characteristicR1 = constant. Usingr and u as independent variables in equations
(5.10) and (5.11) instead ofr andµ yields the formulae

∂

∂R1
= 2r(∂µ/∂R1)

(0 − 3)µ− (0 − 1)(µ2 + 4)
1
2

(
∂

∂r
+ λ1 − λ2

r

∂

∂u

)
(5.15)

∂

∂R3
= 2r(∂µ/∂R3)

(0 − 3)µ+ (0 − 1)(µ2 + 4)
1
2

(
∂

∂r
+ λ3 − λ2

r

∂

∂u

)
. (5.16)

We also note for later reference the formulae

λ2 −λ1 = 1
2r[(µ

2 + 4)
1
2 −µ] λ3 −λ2 = 1

2r[(µ
2 + 4)

1
2 +µ] λ3 −λ1 = r(µ2 + 4)

1
2

(5.17)

for the eigenvalue differences.
Using the results (3.6) for the characteristic wave speedsλ1, λ2 andλ3, and the results

(5.10)–(5.12) we obtain the formulae

∂λ2

∂R1
= − (0 − 1)r[1 + (0 − 2)µ2/(0 − 1)2][µ− (µ2 + 4)

1
2 ]

R1(µ2 + 4)
1
2 [(0 − 3)µ− (0 − 1)(µ2 + 4)

1
2 ]

∂λ3

∂R1
= (0 − 1)r[1 + (0 − 2)µ2/(0 − 1)2][2(0 − 1)+ µ2 − µ(µ2 + 4)

1
2 ]

R1(µ2 + 4)[(0 − 3)µ− (0 − 1)(µ2 + 4)
1
2 ]

∂λ1

∂R2
= ∂λ2

∂R2
= ∂λ3

∂R2
= 0

∂λ1

∂R3
= (0 − 1)r[1 + (0 − 2)µ2/(0 − 1)2][2(0 − 1)+ µ2 + µ(µ2 + 4)

1
2 ]

R3(µ2 + 4)[(0 − 3)µ+ (0 − 1)(µ2 + 4)
1
2 ]

∂λ2

∂R3
= (0 − 1)r[1 + (0 − 2)µ2/(0 − 1)2][µ+ (µ2 + 4)

1
2 ]

R3(µ2 + 4)
1
2 [(0 − 3)µ+ (0 − 1)(µ2 + 4)

1
2 ]

(5.18)

for the λj derivatives appearing in equations (5.4).
Using the results (5.17), (5.18), it is straightforward to verify that equations (5.5) are

satisfied. Hence the dispersionless TDNLS system is a semi-Hamiltonian system.

5.2. Lie–Bäcklund symmetries

Using the results (5.18) for the∂λi/∂Rj and the partial derivative formulae (5.12), (5.15)
and (5.16) for the derivatives with respect to the Riemann invariants, the differential equation
system (5.4) for theWi reduces to

r
∂W 2

∂r
+ (λ1 − λ2)

∂W 2

∂u
= W 1 −W 2 (5.19)

r
∂W 3

∂r
+ (λ1 − λ2)

∂W 3

∂u
= (W 1 −W 3)

[2(0 − 1)+ µ2 − µ(µ2 + 4)
1
2 ]

2(µ2 + 4)
(5.20)

∂W 1

∂θ
= ∂W 3

∂θ
= 0 (5.21)

r
∂W 1

∂r
+ (λ3 − λ2)

∂W 1

∂u
= (W 3 −W 1)

[2(0 − 1)+ µ2 + µ(µ2 + 4)
1
2 ]

2(µ2 + 4)
(5.22)

r
∂W 2

∂r
+ (λ3 − λ2)

∂W 2

∂u
= W 3 −W 2. (5.23)
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Equations (5.19) and (5.23) may be re-arranged to yield expressions forW 1 andW 3 in
terms ofW 2

W 1 = W 2 + r
∂W 2

∂r
+ (λ1 − λ2)

∂W 2

∂u
(5.24)

W 3 = W 2 + r
∂W 2

∂r
+ (λ3 − λ2)

∂W 2

∂u
. (5.25)

Using the results (5.24) and (5.25) forW 1 and W 3 in equation (5.22) yields a linear,
second-order hyperbolic equation forW 2

[(0 − 1)u+1]W 2
ur + r(W 2

rr −W 2
uu)+ 2W 2

r = 0. (5.26)

Exactly the same equation forW 2 is obtained if W 1 and W 3 are eliminated from
equation (5.20).

It is of interest to note that equation (5.26) is similar to the conserved density
equation (4.13) fora(r, u) (the two equations have the same higher-order derivative terms,
but equation (5.26) has a first-order derivative term not present in equation (4.13)). This
suggests that there is a direct link between the solutions forW 2 and the conserved densities
A obtained in section 4.

Equations (5.24)–(5.26) imply that the general solution forW 2 is of the form

W 2 = p(θ)

r
+ Ŵ 2(u, r) (5.27)

whereŴ 2(u, r) satisfies equation (5.26).
One can obtain separated solutions of equation (5.26) by converting tor and µ as

independent variables, to obtain the equation

[(2 − 0)µ2 − (0 − 1)2]W 2
µµ + (0 − 3)rµW 2

rµ + r2W 2
rr − (0 − 1)µW 2

µ + 2rW 2
r = 0.

(5.28)

Equation (5.28) has separated solutions of the form

W 2 = r−sY (µ) (5.29)

whereY (µ) satisfies the ordinary differential equation

[(2 − 0)µ2 − (0 − 1)2]
d2Y

dµ2
− [s(0 − 3)+ 0 − 1]µ

dY

dµ
+ s(s − 1)Y = 0. (5.30)

Equation (5.30) has solutions in terms of hypergeometric functions

Y = a1F

(
s

2
,

1 − s

2(0 − 2)
; 1

2
; z

)
+ a2z

1
2F

(
s + 1

2
,
0 − 1 − s

2(0 − 2)
; 3

2
; z

)
(5.31)

where

z = (2 − 0)µ2

(0 − 1)2
. (5.32)

The solution (5.31) applies for0 6= 1 and0 6= 2. The solution (5.31) can also be expressed
in terms of Legendre functions.

In the analysis below we show explicitly the link between the above solutions forW 2

and the conserved densities obtained in section 4.
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5.3. The link between symmetries and conserved densities

By reverting to(u, v,w) as dependent variables, the Lie–Bäcklund operator (5.6) takes the
form

X̂ =
3∑
α=1

Ŝα
∂

∂uα
+ · · · (5.33)

where

Ŝα =
3∑
s=1

∂uα

∂Rs
WsRsx. (5.34)

Since the TDNLS system is a Hamiltonian system with canonical variables(u, v,w) and
symplectic operatorDx (see equations (2.25)et seq.), the symmetrieŝSα are related to the
potential operators by [25] the equations

Ŝα = Dx(Q
α) . (5.35)

The potential operatorsQα in turn are related to the conserved densitiesA and functionals
A by the equations

Qα = δA
δuα

A =
∫ ∞

−∞
A dx. (5.36)

The conserved densitiesA can be determined by noting that

FQ[u] =
∫ 1

0
ds

〈
Q,
∂u

∂s

〉
=

∫ ∞

−∞
[A(u)]s=1

s=0 dx (5.37)

where the inner product [30, 25]

〈
Q(u),

∂u

∂s

〉
=

∫ ∞

−∞

3∑
α=1

Qα ∂u
α

∂s
dx . (5.38)

In equation (5.37),δuα = (∂uα/∂s)ds corresponds to the variation ofuα in the calculus of
variations sense. Our aim in the present section is to first determine in detail the form of
the relation (5.35) between the symmetriesŜα and potential operatorsQα. Once theQα are
established, the conserved densities are determined from a consideration of the functionals
FQ[u] defined in equations (5.37). The Poisson bracket for functionals

{FP [u], FQ[u]} =
∫ ∞

−∞

δFP

δuα
Dx

(
δFQ

δuα

)
dx =

∫ ∞

−∞
PαDx(Q

α) dx (5.39)

may then be used to study the Poisson bracket Lie algebra.
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(a) TheW 2 = W 2(u,r) case. Using the results (5.24) and (5.25) forW 1 and W 3 in
equation (5.34) leads to the formulae

Ŝα = W 2

(
∂uα

∂R2
R2
x + ∂uα

∂R1
R1
x + ∂uα

∂R3
R3
x

)
+ rW 2

r

(
∂uα

∂R1
R1
x + ∂uα

∂R3
R3
x

)
+W 2

u

[
(λ1 − λ2)

∂uα

∂R1
R1
x + (λ3 − λ2)

∂uα

∂R3
R3
x

]
α = 1(1)3. (5.40)

Use of the fact that the Riemann invariants satisfy the diagonalized system (5.1), and using
the dispersionless TDNLS equations (4.2) to eliminate the time derivativesut , vt andwt ,
equations (5.40) reduce to

Ŝ1 = {W 2 + rW 2
r + [(0 − 1)u+1]W 2

u }ux + rW 2
u rx (5.41)

Ŝ2 = Dx [W 2v] (5.42)

Ŝ3 = Dx [W 2w]. (5.43)

Equations (5.41)–(5.43) only apply for the case whereW 2 = W 2(u, r), and modified
versions of these formulae apply for the case whereW 2 = p(θ)/r.

Further consideration of equation (5.41) shows that we may writeŜ1 = Dx(Q
1) for an

appropriate potentialQ1, where

∂Q1

∂u
= W 2 + rW 2

r + [(0 − 1)u+1]W 2
u (5.44)

∂Q1

∂r
= rW 2

u . (5.45)

The integrability conditionQ1
ur = Q1

ru in these equations requires thatW 2 satisfy equation
(5.26), which is automatically satisfied. Hence from equations (5.41)–(5.45) we obtain

Q1 =
∫ r

r0

r ′W 2
u (u, r

′) dr ′ +
∫ u

u0

[W 2(u′, r)+ rW 2
r (u

′, r)

+ [(0 − 1)u′ +1]W 2
u′(u

′, r)]r0 du′

Q2 = vW 2 Q3 = wW 2

(5.46)

for the potential operatorsQα in equations (5.35). The corresponding symmetry operator is

X̂W 2(u,r) = Dx(Q
1)
∂

∂u
+Dx [vW 2(u, r)]

∂

∂v
+Dx [wW 2(u, r)]

∂

∂w
+ · · · (5.47)

whereW 2(u, r) satisfies equation (5.26).
From equations (5.37), (5.38), the functionalFQ[u] has the form

FQ[u] =
∫ 1

0
ds

∫ ∞

−∞
dx

(
Q1∂u

∂s
+Q2∂v

∂s
+Q3∂w

∂s

)
. (5.48)
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The functional (5.48) may be re-written as

FQ[u] =
∫ 1

0
ds

∫ ∞

−∞
dx

[
∂

∂s
(uQ1)+ ∂r

∂s
r(W 2 − uW 2

u )

− ∂u

∂s
u(W 2 + rW 2

r + [(0 − 1)u+1]W 2
u )

]
. (5.49)

The terms involving∂r/∂s and∂u/∂s in equation (5.49) may be written as the gradient of
a potentialP(u, r) where

P(u, r) =
∫ r

r0

r ′[W 2(u, r ′)− uW 2
u (u, r

′)] dr ′ −
∫ u

u0

du′
[
W 2(u′, r)+ rW 2

r (u
′, r)

+ [(0 − 1)u′ +1]W 2
u′(u

′, r)
]
r=r0

. (5.50)

Taking into account the result (5.50), equation (5.49) reduces to

FQ[u] =
∫ ∞

−∞
[uQ1 + P ]s=1

s=0 dx =
∫ ∞

−∞
[A]s=1

s=0 dx. (5.51)

From equation (5.51) we identifyA = uQ1 + P . Equations (5.46) and (5.50) then yield

A =
∫ r

r0

r ′W 2(u, r ′) dr ′ +
∫ u

u0

du′ (u− u′)[W 2(u′, r)+ rW 2
r (u

′, r)

+ [(0 − 1)u′ +1]W 2
u′(u

′, r)]r0 (5.52)

as the conserved density corresponding to the symmetry operator (5.33). It is straightforward
to verify that the conserved density (5.52) satisfies the linear second-order partial differential
equation (4.13) for the conserved densityA(u, r). Thus we have obtained a direct link
between the symmetries associated with the{Wα : α = 1(1)3} and the corresponding
conserved densityA.

(b) TheW 2 = p(θ )/r case. Starting from equations (5.24), (5.25) the above solution ansatz
implies

W 1 = W 3 = 0. (5.53)

Equations (5.34) then reduce to

Ŝα = ∂uα

∂R2
W 2R2

x α = 1(1)3. (5.54)

From equations (5.54) we obtain

Ŝα = Dx(Q
α) α = 1(1)3 (5.55)

where

Q1 = 0 Q2 = −
∫ θ

θ0

p(θ ′) sinθ ′ dθ ′ Q3 =
∫ θ

θ0

p(θ ′) cosθ ′ dθ ′ (5.56)
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are the potential operators.
A calculation similar to that carried out in case (a), leads to the identification of the

conserved density

A = rh(θ) (5.57)

where

h(θ) =
∫ θ

θ0

p(θ ′) sin(θ − θ ′) dθ ′. (5.58)

The conserved density (5.57) corresponds to the conserved density (4.14) obtained by more
elementary means in section 4. The present approach shows explicitly the connection
between the conserved density and the corresponding symmetry. The Lie–Bäcklund
symmetry operator (5.33) in cylindrical polar coordinates may be written in the form

X̂p(θ) = Dx(Q
2)
∂

∂v
+Dx(Q

3)
∂

∂w
≡ p(θ)θx

r

∂

∂θ
+ · · · (5.59)

whereQ2 and Q3 are given by equations (5.56). The symmetry (5.59) is a non-local
symmetry.

6. Lie–Bäcklund symmetries and the hodograph transformation

The aim of this section is to show how the functionW 2(u, r) associated with the Lie–
Bäcklund symmetries of equations (5.6) and (5.24)–(5.26) arises from a consideration of
the hodograph transformation of the dispersionless TDNLS equations. It is also shown how
the hodograph transformation leads to the symmetries (5.41)–(5.43) and conserved densities
(5.52) obtained in section 5.

We note that the point Lie symmetries admitted by the dispersionless TDNLS system
(4.3) for 0 6= 1 has the general isovector

X = c1X1 + c2X2 + h(θ)X3 + c4X4 + c5X5 (6.1)

where the symmetry operatorsX1, X2, X3 andX4 are given by equations (2.15) (the Lie
point symmetry operators for the dispersive TDNLS equations), plus the ‘stretch’ operator

X5 = x
∂

∂x
+ t

∂

∂t
. (6.2)

The general isovector of the dispersive TDNLS system is obtained by settingh(θ) = c3 =
constant, andc5 = 0 in equation (6.1). The symmetry operator (6.1) also applies for the
case0 = 1 and1 6= 0. For0 = 1 and1 = 0, a larger symmetry algebra is obtained for
the TDNLS system [20].



5232 G M Webb et al

6.1. A simplified version of the dispersionless TDNLS system

In this section we consider the version of the dispersionless TDNLS system (4.3) that results
when the solution forθ is taken asθ = constant. Equations (4.3) then reduce to

ut + 0uux + rrx = 0

rt + (u−1)rx + rux = 0.
(6.3)

Equations (6.3) may be linearized by the hodograph transformation in whicht and x are
regarded as functions ofu and r. One method of obtaining the hodograph equations is to
note that equations (6.3) may be represented by the closed ideal of differential forms (see,
e.g., [31])

α1 = dx ∧ du+ (0udu+ rdr) ∧ dt ≡ d[−udx + 1
2(0u

2 + r2)dt ]

α2 = dx ∧ dr + [(u−1)dr + rdu] ∧ dt ≡ d[−rdx + r(u−1)dt ].
(6.4)

Sectioning the forms (6.4) by settingα1 = 0 andα2 = 0, and requiring thatu and r to be
functions ofx and t yields equations (6.3).

On the other hand sectioning the forms (6.4) by settingα1 = 0 andα2 = 0 and requiring
t = t (u, r) andx = x(u, r) yields the hodograph equations

xr = 0utr − rtu xu = (u−1)tu − rtr . (6.5)

The integrability conditionxru = xur for equations (6.5) leads to the equation

r(trr − tuu)+ [(0 − 1)u+1]tur + (0 + 1)tr = 0 (6.6)

for t (u, r). The hodograph transformation remains single valued provided the Jacobian

J = ∂(x, t)

∂(u, r)
= xutr − xr tu = r(t2u − t2r )− [(0 − 1)u+1]tr tu (6.7)

is non-zero. The Jacobian vanishes ift = t (u, r) is a Riemann invariant of the dispersionless
TDNLS system (i.e. ift is constant on the characteristic curves (3.14)). The integrability
condition tur = tru yields the equation

[0u(u−1)− r2]{r(xrr − xuu)+ [(0 − 1)u+1]xur} + [2r2 + 0(2u−1)(u−1)]xr

+ 0r(4u−1)xu = 0 (6.8)

for x = x(u, r). Equations (6.6) and (6.8) are linear second-order partial differential
equations for t (u, r) and x(u, r). Hence the hodograph transformation provides a
linearization of the simplified TDNLS system (6.3).

The form of equation (6.6) fort (u, r) is reminiscent of equation (5.26) for the function
W 2(u, r) that arose in the analysis of the Lie–Bäcklund symmetries in section 5 (the two
equations differ only in the first-order derivative terms with respect tor). To make
the connection betweent (u, r) and W 2(u, r) more concrete, note that the hodograph
equations (6.5) may be formally integrated by settingt = 8u to yield the equations

t = 8u x = (u−1)8u − (8+ r8r)+G(r) (6.9)
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where8(u, r) satisfies the differential equation

r(8rr −8uu)+ [(0 − 1)u+1]8ur + 28r = 0 (6.10)

andG(r) is an arbitrary function ofr. The equation (6.10) for8(u, r) is the same as
equation (5.26) forW 2(u, r). Thus the functionW 2(u, r) may be identified with8(u, r),
and

t = 8u ≡ W 2
u . (6.11)

Equation (6.11) provides a link between the symmetry group analysis of section 5 and the
hodograph transformation. Without loss of generality we setG(r) = 0 in equations (6.9)
in the following analysis.

The above analysis indicates that the functionW 2 ≡ 8(u, r) is central to the analysis
of the Lie–B̈acklund symmetries of the dispersionless TDNLS system (4.3). The Lie point
symmetries of equation (6.10) for8(u, r), induce via hodograph transformation (6.9),
symmetries of the dispersionless TDNLS equations (6.3). This situation is similar to the
derivation of Lie–B̈acklund symmetries of the Burgers equation by exploiting the Cole–
Hopf transformation between the Burgers equation and the heat equation [29], in which
symmetries of the heat equation may be used to obtain symmetries of the Burgers equation.

Equation (6.10) admits the symmetry operator

Y = V u
∂

∂u
+ V r

∂

∂r
+ V 8

∂

∂8
(6.12)

where

V u = c4[(0 − 1)u+1] V r = c4(0 − 1)r

V 8 = [c5 − c4(0 − 1)]8+�(u, r)
(6.13)

and�(u, r) satisfies equation (6.10). The symmetry operator (6.12) may be written in the
form

V = c4Y4 + c5Y5 + Y� (6.14)

where

Y4 = (0 − 1)r
∂

∂r
+ [(0 − 1)u+1]

∂

∂u
− (0 − 1)8

∂

∂8

Y5 = 8
∂

∂8
Y� = �(u, r)

∂

∂8
.

(6.15)

Since�(u, r) is an arbitrary solution of equation (6.10), the symmetry algebra corresponding
to the operators (6.15) is infinite dimensional.

The infinitesimal Lie transformations

t ′ = t + εV t x ′ = x + εV x (6.16)

for t and x may be obtained from the hodograph transformation equations (6.9), and the
Lie derivative extension formulae (e.g. [29])

V 8uβ = DV8

Duβ
− DV u

α

Duβ

∂8

∂uα
(6.17)
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where(u1, u2) ≡ (u, r) andD/Duβ denotes the total derivative with respect touβ . The
formulae forV t andV x are

V t = [c5 − 2c4(0 − 1)]t +�u

V x = [c5 − c4(0 − 1)]x + c401t + [(u−1)�u −�− r�r ] .
(6.18)

The parameterc4 and the operatorY4 may be identified with the symmetry operatorX4 in
equations (2.15) for the dispersive TDNLS system. Similarly,c5 andY5 may be identified
with the ‘stretch’ symmetryX5 in equation (6.2).

The infinite class of symmetries associated withY� in equation (6.15) where�(u, r)
satisfies the partial differential equation (6.10) correspond in fact to the infinite class of
Lie–Bäcklund symmetries (5.41)–(5.43) associated with the dispersionless TDNLS system
(4.3). In particular we may identify the space and time translation symmetriesX1 = ∂/∂x

andX2 = ∂/∂t by noting that

� = c2(u−1)− c1 (6.19)

is a solution of equation (6.10). Using equations (6.18) it follows that� = −1 (c1 = 0,
c2 = 0) corresponds toX1 and� = u − 1 (c1 = 0, c2 = 1) corresponds toX2. Hence
from equation (6.15) we find the operators

Y1 = − ∂

∂8
Y2 = (u−1)

∂

∂8
(6.20)

correspond to the space and time translation symmetries respectively of equations (6.3).
The infinite dimensional symmetry algebra associated with{Y1, Y2, Y4, Y5, Y�} and equation
(6.10) has non-zero commutators

[Y1, Y4] = −(0 − 1)Y1 [Y1, Y5] = Y1

[Y2, Y4] = 01Y1 − 2(0 − 1)Y2 [Y2, Y5] = Y2

[Y4, Y�] = 3
∂

∂8
≡ Y3 [Y5, Y�] = −Y�

(6.21)

where

3(u, r) = R� R = [(0 − 1)u+1]
∂

∂u
+ (0 − 1)

(
r
∂

∂r
+ 1

)
. (6.22)

One can verify that3(u, r) satisfies the partial differential equation (6.10) for8(u, r),
and henceY3 is an element of the Lie algebra. The commutators [Y1, Y4] and [Y2, Y4]
in equations (6.21) obey the same commutation relations as [X1, X4] and [X2, X4] in the
dispersive TDNLS Lie algebra (2.16). These results are expected in view of the fact that
the two algebras are linked via the hodograph transformation (6.9).

Proposition. The operatorR in equation (6.22) is a recursion operator for symmetries of
the equation

K(8) =
[
r

(
∂2

∂r2
− ∂2

∂u2

)
+ [(0 − 1)u+1]

∂2

∂u∂r
+ 2

∂

∂r

]
8 = 0. (6.23)

To prove the proposition, it is first necessary to define what is meant by a symmetry
and a recursion operator.
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Definition 1. The canonical Lie–B̈acklund symmetry operator̂Y (η̂) associated with the
infinitesimal Lie transformation

x ′i = xi + εξ i u′α = uα + εηα i = 1(1)n α = 1(1)m (6.24)

is given by

Ŷ (η̂) = η̂α
∂

∂uα
+Di(η̂

α)
∂

∂uαi
+DiDj(η̂

α)
∂

∂uαij
+ · · · (6.25)

where

η̂α = ηα − ξ juαj (6.26)

is the canonical Lie–B̈acklund symmetry andDi = D/Dxi is the total derivative operator
with respect to the independent variablexi , anduαi = Di(u

α), uαij = DiDju
α, etc, denote

the partial derivatives of the dependent variablesuα (see, e.g., [29]).

Definition 2. A symmetryη̂α of a differential equation systemK(u) = 0 is an infinitesimal
canonical Lie–B̈acklund transformationx ′i = xi , u′α = uα +εη̂α, which leaves the equation
system invariant.

One can show (see, e.g., [29, 32]) that ifη̂α is a symmetry ofK(u) = 0, then

Ŷ (η̂)[K(u)]K=0 = 0 (6.27)

where the subscriptK = 0 in equation (6.27) emphasizes thatK(u) = 0 on the solution
manifold. Alternatively one can write

Ŷ (η̂)[K(u)] = K ′(u)[η̂] (6.28)

whereK ′(u) is the Fŕechet derivative ofK(u).

Definition 3. An operatorR is a recursion operator for symmetries of a differential equation
systemK(u) = 0, if R(η̂) is a symmetry whenever̂η is a symmetry.

Using the above definitions one can show thatR is a recursion operator forK(u) = 0
iff

[Ŷ ,R](η̂)[K] = [K ′,R](η̂) = 0 wheneverK(u) = 0. (6.29)

To establish the proposition, first note that

K ′ = K ≡ r

(
∂2

∂r2
− ∂2

∂u2

)
+ [(0 − 1)u+1]

∂2

∂u∂r
+ 2

∂

∂r
(6.30)

for the operatorK(8) in equation (6.23). Using the definition ofR in equation (6.22) it is
straightforward to verify that [K ′,R] = 0, which establishes the proposition.

It is of interest to note the action of the recursion operatorR on the symmetrieŝη1, η̂2,
η̂4, η̂5 and η̂� corresponding to the symmetry operatorsY1, Y2, Y4, Y5 andY� discussed in
equations (6.14)et seq. We find

R(η̂1) = (0 − 1)η̂1 R(η̂2) = 2(0 − 1)η̂2 − 01η̂1

R(η̂4) = −R2(η̂5) R(η̂5) = η̂4 R(η̂�) = R(�)
(6.31)

where
η̂1 = −1 η̂2 = u−1 η̂4 = −R(8)
η̂5 = 8 η̂� = �(u, r).

(6.32)

Note thatR(�) andR(8) both satisfy equation (6.10) if� and8 satisfy the equation.
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6.2. The Lie–B¨acklund symmetriesYΩ and X̂Ω

In this section we point out the connection between the symmetryY� associated with
equation (6.10) and the Lie–Bäcklund symmetryX̂� (equation (5.47)) of the dispersionless
TDNLS equations (4.3), where�(u, r) ≡ W 2(u, r) satisfies equation (6.10). Using
equations (6.14)–(6.20) it follows that the dispersionless TDNLS equations admit the
symmetry operator

X̃� = [(u−1)�u −�− r�r ]
∂

∂x
+�u

∂

∂t
+ · · · (6.33)

whereθ is held constant. A straightforward calculation using equations (6.24)–(6.26) shows
that the operator

X� = [(u−1)�u −�− r�r ]
∂

∂x
+�u

∂

∂t
− r�rθx

∂

∂θ
+ · · · (6.34)

is the generalization of̃X� for θ 6= constant. The canonical Lie–Bäcklund operator̂X�(u,r)
corresponding to the operator (6.34) is

X̂� = Dx(Q
1
�)
∂

∂u
+Dx [�(u, r)v]

∂

∂v
+Dx [�(u, r)w]

∂

∂w
+ · · · (6.35)

where

Q1
� =

∫ r

r0

r ′�u(u, r ′) dr ′ +
∫ u

u0

du′ [�(u′, r)+ r�r(u
′, r)+ [(0 − 1)u′ +1]�u′(u′, r)]r0

(6.36)

which is the symmetry operator (5.47) with� ≡ W 2(u, r).

7. The symmetry algebra of the dispersionless TDNLS equations

The Lie point symmetriesX1,X2, h(θ)X3,X4 andX5 admitted by the dispersionless TDNLS
equations plus the Lie–B̈acklund symmetries (5.47) and (5.59) obtained in section 5 (see
also section 6) define an infinite dimensional Lie algebra. Using the results (6.24)–(6.26)
the canonical Lie–B̈acklund symmetry operators for these symmetries can be written in the
form

X̂1 = −Dx(u)
∂

∂u
−Dx(r)

∂

∂r
− θx

∂

∂θ
+ · · ·

X̂2 = Dx

(
0u2 + r2

2

)
∂

∂u
+Dx [(u−1)r]

∂

∂r
+ (u−1)θx

∂

∂θ
. . .

h(θ)X̂3 = h(θ)
∂

∂θ
+Dx [h(θ)]

∂

∂θx
+ · · ·

X̂4 = Dx{[(0 − 1)x − 01t ]u+1x − (0 − 1)t (0u2 + r2)} ∂
∂u

+Dx{[(0 − 1)x − 01t − 2(0 − 1)t (u−1)]r} ∂
∂r
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+[(0 − 1)x − 01t − 2(0 − 1)t (u−1)]θx
∂

∂θ
+ · · ·

X̂5 = Dx [U − xu+ 1
2t (0u

2 + r2)]
∂

∂u
+Dx [R − xr + t (u−1)r]

∂

∂r

+[t (u−1)− x]θx
∂

∂θ
+ · · ·

X̂p(θ) = p(θ)θx

r

∂

∂θ
+Dx

(
p(θ)θx

r

)
∂

∂θx
+ · · ·

X̂� = Dx(Q
1
�)
∂

∂u
+Dx [r�(u, r)]

∂

∂r
+�(u, r)θx

∂

∂θ
+ · · ·

(7.1)

where

U = D−1
x (u) R = D−1

x (r) (7.2)

and Dx = ∂/∂x and Dt = ∂/∂t . The potentialQ1
� in equation (7.1) is defined in

equation (6.36). The operators (7.1) can be written in terms of the potential operators
(equations (5.33)–(5.35)) if the canonical variables(u, v,w) are used instead of(u, r, θ) as
the basic variables.

Using the standard result

[X̂(η̂1), X̂(η̂2)] = X̂(η̂3) η̂3 = X̂(η̂1)η̂2 − X̂(η̂2)η̂1 (7.3)

for the commutator of two canonical Lie–Bäcklund symmetry operators [31], the symmetry
algebra generated by the operators (7.1) has non-zero commutators

[X̂1, X̂4] = −(0 − 1)X̂1 [X̂1, X̂5] = X̂1

[X̂2, X̂4] = 01X̂1 − 2(0 − 1)X̂2 [X̂2, X̂5] = X̂2

[X̂3, h(θ)X̂3] = h′(θ)X̂3 [X̂3, X̂p(θ)] = X̂p′(θ)

[h1(θ)X̂3, h2(θ)X̂3] = [h1(θ)h
′
2(θ)− h2(θ)h

′
1(θ)]X̂3

[h(θ)X̂3, X̂p(θ)] = X̂P (θ) P (θ) = h(θ)p′(θ)− p(θ)h′(θ)

[X̂4, X̂�(u,r)] = X̂3(u,r) 3(u, r) = R[�(u, r)]

[X̂5, X̂p(θ)] = −X̂p(θ) [X̂5, X̂�] = −X̂�

(7.4)

plus the reverse commutators. In equations (7.4)3(u, r) ≡ R�(u, r), and the recursion
operatorR are defined in equations (6.22). Both�(u, r) and3(u, r) satisfy the linear
partial differential equation (6.10). The commutation relations (7.4) show that the operators
form a closed Lie algebra.
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8. Concluding remarks

In this paper we have obtained infinite classes of Lie–Bäcklund symmetries and conservation
laws for the dispersionless TDNLS equations describing the interaction of the Alfvén and
magnetoacoustic waves near the triple umbilic point. At the triple point the gas sound speed
ag and Alfvén speedVA coincide, and the Alfv́en and the fast and slow magnetoacoustic
speeds have the the same value for wave propagation along the magnetic field.

In section 2 an overview of the Lie point symmetries, Hamiltonian and Lagrangian
variational formulations of the dispersive TDNLS equations was given. The dispersionless
TDNLS equations are of hydrodynamic type; they have three families of characteristics
analogous to the slow, fast and intermediate modes of MHD, and can be written in diagonal
form in terms of the Riemann invariants (section 3).

Conservation laws for the dispersionless equations were obtained by three different
methods. The first method (section 4) is to search for conserved densitiesA(u, v,w) and
fluxes F(u, v,w), whereu, v andw are the dependent variables by direct manipulation
of the equations (u represents the density perturbation, whereasv andw correspond to the
transverse magnetic field perturbations). Two infinite families of conservation laws were
obtained. The first family of conservation laws corresponds to conserved densities of the
form A = A(u, r) where r = (v2 + w2)

1
2 . This class of conserved densities satisfies

the linear second-order, hyperbolic differential equation (4.13) or (4.20), which admits
separable solutions involving solutions of Legendre’s equation (in some cases, the solutions
are in terms of confluent hypergeometric functions, parabolic cylinder functions or modified
Bessel functions depending on the values of the parameters). By appropriate choice of
the separation parameter an infinite class of polynomial conserved densities inu and r
are obtained. The second class of conserved densities are of the formA = rh(θ) where
θ = tan−1(w/v) andh(θ) is an arbitrary differentiable function ofθ (equation (4.15)).

Further insight into the symmetries and conservation laws of the dispersionless equations
was obtained in section 5, by using the theory of symmetries of systems of hydrodynamic
type developed by Dubrovin and Novikov [21], Tsarev [22, 23] and others (see, e.g.,
Ferapontov [24]) based on the diagonalized Riemann invariant form of the equations.
It was shown that the dispersionless TDNLS equations are semi-Hamiltonian, implying
the existence of an infinite class of conservation laws for the equations. The Riemann
invariant analysis allows one to identify the Lie–Bäcklund symmetry associated with each
conservation law. Since the TDNLS equations are Hamiltonian with symplectic operator
Dx , it follows that the generators of the canonical Lie–Bäcklund symmetries are of the form
Ŝα = Dx(Q

α) where theQα are potential operators [25]. The conserved densitiesA can be
reconstructed from the potential operatorsQα by the methods developed by Magri [25, 30].

The third method used to obtain Lie–Bäcklund symmetries was to note that the
dispersionless equations, withθ taken as constant consist of two coupled equations of
hydrodynamic type foru(x, t) and r(x, t) which can be linearized by the hodograph
transformation. By writingt (u, r) = 8u(u, r), the hodograph equations forx and t can be
formally integrated, where the function8(u, r) satisfies the second-order, linear, hyperbolic
differential equation (6.10), which also arises in the Riemann invariant analysis of section 5.
By determining the Lie point symmetries of the equation for8(u, r) and exploiting the
hodograph transformation again leads to the infinite class of symmetries and conserved
densities of the formA = A(u, r) obtained in sections 4 and 5. The method also reveals
a recursion operator for symmetries of the8 equation (6.10). This development shows the
central role of the hodograph transformation for the dispersionless TDNLS equations.

An overview of the symmetry algebra of the dispersionless TDNLS equations was
provided in section 7.
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A question not addressed by the present paper is the possibility of multi-Hamiltonian
formulations of the dispersionless TDNLS equations. For0 = 1 and1 = 0, the simplified
dispersionless equations (6.3) may be identified as the equations of adiabatic compressible
gas dynamics in one Cartesian space dimension with polytropic indexγg = 3, which are
known to possess a multi-Hamiltonian formulation (e.g. [33]). Also of interest is the relation
between the present results, and work by Zajaczkowski [34, 35] in magnetohydrodynamics
using the generalized method of characteristics.

Studies of the dispersive and dissipative form of the TDNLS equations [20, 16] and
related equations [36], show that sufficiently compressive solutions tend to develop shocks.
This suggests that a study of the Riemann problem for the non-dispersive TDNLS equations
should yield further insight into the formation of intermediate shocks, a subject of current
interest in interplanetary physics [37].
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Appendix

In this appendix we indicate the connection between the conserved densitiesA1 andA2 in
equations (4.30) associated with space translation and time translation invariance and the
polynomial conserved densities (4.28). Using the result

P (α,β)n (x) = n+αCnF (−n, n+ α + β + 1;α + 1; 1
2(1 − x)) (A.1)

relating the Jacobi polynomialP (α,β)n (x) and the hypergeometric functionF(a, b; c; 1
2(1−x))

[28, formula 22.5.42, p 779], we find

a0 = 1 a1 = (2 − 0)
1
2

(
u+ 1

0 − 1

)

a2 = r2 +
(
u+ 1

0 − 1

)2

a3 = (2 − 0)
1
2

[
r2

(
u+ 1

0 − 1

)
+ 0

3

(
u+ 1

0 − 1

)3]
(A.2)

for the first few polynomial conserved densities (4.28) (setα1 = 1 andβ1 = 1 in equations
(4.28)). Using the results (A.2) the expansions

A1 = 1

2
a2 − 1

(0 − 1)(2 − 0)
1
2

a1 + 12

2(0 − 1)2
a0

A2 = 1

2

[
a3

(2 − 0)
1
2

− 01

0 − 1
a2 + 012

(0 − 1)2(2 − 0)
1
2

a1 − 013

3(0 − 1)3
a0

] (A.3)

for the conserved densitiesA1 andA2 can be obtained straightforwardly.
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